organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-Acetylamino-2,4-dimethyl-1,8naphthyridine

De-Hui Wang,^a Yao-Ming Yu,^a Jian-Hua Chen^a and Wen-Fu Fu^b*

^aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, People's Republic of China, and Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China Correspondence e-mail: fuwfu@sohu.com

Received 1 December 2006; accepted 2 September 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.048; wR factor = 0.153; data-to-parameter ratio = 13.5.

The air-stable title compound, $C_{12}H_{13}N_3O$, which is of interest due to its antibacterial properties, is an almost planar molecule in which the ten atoms forming the 1,8-naphthyridine ring have an r.m.s. deviation of 0.03 Å from the least-squares plane calculated using the ten atoms. The plane of the acetylamino group is slightly inclined [11.7 (2)°] to the plane of the 1,8naphthyridine ring.

Related literature

For related literature, see: Catalano *et al.* (2000); Chen *et al.* (2001); Ferrarini *et al.* (1997, 2000); He & Lippard (2001); Henry & Hammond (1977); Mogilaiah *et al.* (2001); Nakatani *et al.* (2000); Roma *et al.* (2000); Saito *et al.* (2001).

Experimental

Crystal data $C_{12}H_{13}N_{3}O$ $M_r = 215.25$

a = 7.970 (8) Å

b = 7.309 (7) Å	
c = 19.071 (18) Å	
$\beta = 91.883 \ (14)^{\circ}$	
$V = 1110.4 (18) \text{ Å}^3$	
Z = 4	

Data collection

SMART 1K CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{\min} = 0.970, T_{\max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.153$ S = 1.021959 reflections Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 (2) K $0.52 \times 0.36 \times 0.24 \text{ mm}$

5375 measured reflections 1959 independent reflections 1169 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$

145 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff, 1996) and *XP* (Bruker, 2000); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2000).

We are grateful to the NSFC/RGC Joint Research Foundation (50418010) and a State Key Project (No. 2005CCA06800) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2027).

References

- Bergerhoff, G. (1996). DIAMOND. Version 1.2. Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.
- Bruker (2000). SMART, SAINT, XPREP and XP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Catalano, V. J., Kar, H. M. & Bennett, B. L. (2000). *Inorg. Chem.* 39, 121–127.
 Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). *J. Med. Chem.* 44, 2374–2378.

Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem. 35, 815–819.

 Ferrarini, P. L., Mori, C., Badawneh, M., Manera, C., Martinelli, A., Miceli, M., Ramagnoli, F. & Saccomanni, G. (1997). J. Heterocycl. Chem. 34, 1501–1504.
 He, C. & Lippard, S. J. (2001). J. Am. Chem. Soc. 40, 1414–1419.

Henry, R. A. & Hammond, P. R. (1977). J. Heterocycl. Chem. 14, 1109–1112.

Mogilaiah, K., Chowdary, D. S. & Rao, R. B. (2001). Indian J. Chem. pp. 40-43.

Nakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172–2178. Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J.

Med. Chem. 35, 1021–1026.

Saito, I., Sando, S. & Nakatani, K. (2001). Bioorg. Med. Chem. 9, 2381–2387.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2008). E64, o112 [doi:10.1107/S1600536807042948]

7-Acetylamino-2,4-dimethyl-1,8-naphthyridine

D.-H. Wang, Y.-M. Yu, J.-H. Chen and W.-F. Fu

Comment

The 1,8-naphthyridine compounds have been the focus of studies and practical applications as antibacterial agents (Mogilaiah *et al.*, 2001). Recent parallels in biological activity of this class of compounds have been found in the form of antibacterial (Chen *et al.*, 2001), antiinflammatory (Roma *et al.*, 2000), antihypertensive (Ferrarini *et al.*, 2000), and antiplatelet activity (Ferrarini *et al.*, 1997). In addition to medicinal applications, this class of compounds have been employed in the study of bioorganic and bioorganometallic processes (Saito *et al.*, 2001; He *et al.*, 2001; Nakatani *et al.*, 2000). The structure of the C₁₂H₁₃N₃O in (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table. 1. The structure of this compound is a rigid nearly planar molecule with an r.m.s. deviation of 0.03 Å for the ten atoms making up the 1,8-naphthyridine ring. The least square plane calculated from the atoms of the acetyl amino group make an dihedral angle of 11.7 (2) ° to the least square plane of the 1,8-naphthyridine ring All bond distances are essentially identical to those found in the literature (Catalano *et al.*, 2000).

Experimental

2-amino-5, 7-Dimethyl-1, 8-naphthyridine (Henry *et al.*, 1977) (4.0 g, 0.10 mol) was added to a Ac_2O (15 ml) solution under an atmosphere of N₂. After the solution was stirred at reflux temperature for 1 h, excess solvent was removed and the final product was obtained following flash chromatography. Then, the compound was dissolved in CH₂Cl₂ and recrystallized by slow diffusion of aether into the CH₂Cl₂ solution. Yellow crystals suitable for X-ray diffraction were obtained.

Refinement

All H atoms were placed in calculated positions. The H atoms were then constrained to an ideal geometry with C—H distances of 0.93–0.96 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ and N—H distance of 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of the title compound drawn with *DIAMOND* (Bergerhoff, 1996). Displacement ellipsoids at the 30% probability level.

Fig. 2. The packing of the title compound viewed along the *c* axis, drawn with XP (Bruker, 2000). H atoms have been omitted. The molecules shown are centered around z=0.0.

7-Acetylamino-2,4-dimethyl-1,8-naphthyridine

Crystal data	
C ₁₂ H ₁₃ N ₃ O	$F_{000} = 456.0$
$M_r = 215.25$	$D_{\rm x} = 1.288 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1274 reflections
a = 7.970 (8) Å	$\theta = 2.7 - 25.2^{\circ}$
b = 7.309 (7) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 19.071 (18) Å	T = 298 (2) K
$\beta = 91.883 \ (14)^{\circ}$	Block, pale yellow
$V = 1110.4 (18) \text{ Å}^3$	$0.52 \times 0.36 \times 0.24 \text{ mm}$
Z = 4	

Data collection

SMART 1K CCD diffractometer	1959 independent reflections
Radiation source: fine-focus sealed tube	1169 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
Detector resolution: 10 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.1^{\circ}$
ϕ and ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)	$k = -8 \rightarrow 8$
$T_{\min} = 0.970, \ T_{\max} = 0.980$	$l = -18 \rightarrow 22$
5375 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.153$	$w = 1/[\sigma^2(F_o^2) + (0.0724P)^2 + 0.2527P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$

1959 reflections

 $\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$

145 parameters

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.8038 (2)	0.1591 (3)	0.16857 (10)	0.0416 (5)
N2	0.6692 (2)	-0.1164 (3)	0.15749 (10)	0.0443 (6)
N3	0.9292 (3)	0.4340 (3)	0.18935 (10)	0.0483 (6)
Н3	0.8956	0.4199	0.2314	0.058*
01	1.0871 (3)	0.6171 (3)	0.12288 (10)	0.0856 (8)
C1	0.7455 (3)	0.0253 (3)	0.12480 (11)	0.0391 (6)
C2	0.6113 (3)	-0.2514 (4)	0.11782 (13)	0.0480 (7)
C3	0.6280 (3)	-0.2537 (4)	0.04464 (14)	0.0546 (7)
H3A	0.5891	-0.3546	0.0192	0.066*
C4	0.6991 (3)	-0.1130 (4)	0.01004 (12)	0.0472 (7)
C5	0.7602 (3)	0.0348 (3)	0.05134 (12)	0.0410 (6)
C6	0.8324 (3)	0.1936 (4)	0.02437 (13)	0.0498 (7)
Н6	0.8425	0.2063	-0.0238	0.060*
C7	0.8875 (3)	0.3283 (4)	0.06768 (13)	0.0519 (7)
H7	0.9331	0.4351	0.0499	0.062*
C8	0.8742 (3)	0.3032 (3)	0.14080 (12)	0.0415 (6)
С9	0.5235 (4)	-0.4030 (4)	0.15366 (15)	0.0654 (8)
H9A	0.5582	-0.4054	0.2023	0.098*
H9B	0.5514	-0.5173	0.1322	0.098*
H9C	0.4045	-0.3839	0.1496	0.098*
C10	0.7102 (4)	-0.1127 (4)	-0.06836 (13)	0.0670 (9)
H10A	0.6876	-0.2334	-0.0861	0.100*
H10B	0.8208	-0.0758	-0.0809	0.100*
H10C	0.6291	-0.0287	-0.0882	0.100*
C11	1.0292 (3)	0.5810 (4)	0.17874 (14)	0.0531 (7)
C12	1.0655 (4)	0.6957 (4)	0.24196 (16)	0.0728 (9)
H12A	1.1689	0.7605	0.2364	0.109*
H12B	1.0749	0.6188	0.2827	0.109*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H12C	0.9759	0.7818	0.2475	0.1	09*	
Atomic disp	lacement parameter	rs (\AA^2)				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0491 (12)	0.0434 (12)	0.0325 (11)	-0.0017 (10)	0.0048 (9)	0.0003 (10)
N2	0.0509 (12)	0.0426 (13)	0.0394 (12)	0.0014 (10)	0.0001 (9)	0.0032 (10)
N3	0.0605 (13)	0.0505 (14)	0.0348 (11)	-0.0094 (11)	0.0131 (10)	-0.0031 (10)
01	0.1048 (17)	0.1011 (18)	0.0518 (13)	-0.0489 (14)	0.0190 (12)	0.0028 (12)
C1	0.0413 (13)	0.0436 (15)	0.0323 (13)	0.0071 (11)	0.0007 (10)	-0.0007 (11)
C2	0.0502 (15)	0.0443 (16)	0.0490 (16)	0.0052 (12)	-0.0052 (13)	0.0001 (13)
C3	0.0593 (17)	0.0520 (18)	0.0515 (17)	0.0047 (14)	-0.0120 (14)	-0.0105 (14)
C4	0.0478 (15)	0.0560 (17)	0.0376 (14)	0.0117 (13)	-0.0033 (11)	-0.0068 (13)
C5	0.0408 (13)	0.0503 (16)	0.0318 (13)	0.0076 (12)	0.0005 (10)	0.0005 (12)
C6	0.0562 (15)	0.0649 (18)	0.0285 (13)	0.0037 (14)	0.0053 (11)	0.0025 (13)
C7	0.0626 (17)	0.0556 (17)	0.0381 (14)	-0.0031 (14)	0.0096 (12)	0.0073 (13)
C8	0.0463 (14)	0.0448 (15)	0.0339 (13)	0.0024 (12)	0.0073 (11)	0.0011 (12)
C9	0.073 (2)	0.0542 (19)	0.069 (2)	-0.0094 (15)	-0.0014 (16)	0.0020 (15)
C10	0.078 (2)	0.085 (2)	0.0372 (15)	0.0111 (17)	-0.0053 (14)	-0.0135 (15)
C11	0.0555 (16)	0.0564 (18)	0.0479 (16)	-0.0107 (14)	0.0118 (13)	0.0033 (14)
C12	0.087 (2)	0.068 (2)	0.065 (2)	-0.0249 (18)	0.0199 (16)	-0.0170 (16)

Geometric parameters (Å, °)

N1—C8	1.313 (3)	C5—C6	1.401 (3)
N1—C1	1.357 (3)	C6—C7	1.349 (4)
N2—C2	1.318 (3)	С6—Н6	0.9300
N2—C1	1.363 (3)	С7—С8	1.414 (3)
N3—C11	1.357 (3)	С7—Н7	0.9300
N3—C8	1.392 (3)	С9—Н9А	0.9600
N3—H3	0.8600	С9—Н9В	0.9600
O1—C11	1.204 (3)	С9—Н9С	0.9600
C1—C5	1.411 (3)	C10—H10A	0.9600
C2—C3	1.406 (4)	C10—H10B	0.9600
C2—C9	1.488 (4)	C10—H10C	0.9600
C3—C4	1.356 (4)	C11—C12	1.489 (4)
С3—НЗА	0.9300	C12—H12A	0.9600
C4—C5	1.414 (3)	C12—H12B	0.9600
C4—C10	1.501 (4)	C12—H12C	0.9600
C8—N1—C1	118.2 (2)	С8—С7—Н7	120.8
C2—N2—C1	117.4 (2)	N1—C8—N3	114.4 (2)
C11—N3—C8	128.2 (2)	N1—C8—C7	123.3 (2)
C11—N3—H3	115.9	N3—C8—C7	122.3 (2)
С8—N3—H3	115.9	С2—С9—Н9А	109.5
N1-C1-N2	114.5 (2)	С2—С9—Н9В	109.5
N1—C1—C5	122.5 (2)	Н9А—С9—Н9В	109.5
N2—C1—C5	123.0 (2)	С2—С9—Н9С	109.5
N2—C2—C3	122.4 (2)	Н9А—С9—Н9С	109.5

N2-C2-C9	117.0 (2)	H9B—C9—H9C	109.5
С3—С2—С9	120.5 (2)	C4C10H10A	109.5
C4—C3—C2	121.9 (2)	C4C10H10B	109.5
С4—С3—НЗА	119.0	H10A—C10—H10B	109.5
С2—С3—НЗА	119.0	C4—C10—H10C	109.5
C3—C4—C5	116.7 (2)	H10A—C10—H10C	109.5
C3—C4—C10	121.7 (2)	H10B—C10—H10C	109.5
C5-C4-C10	121.6 (3)	O1-C11-N3	123.3 (3)
C6—C5—C1	117.0 (2)	O1—C11—C12	121.6 (3)
C6—C5—C4	124.5 (2)	N3-C11-C12	115.1 (2)
C1—C5—C4	118.5 (2)	C11—C12—H12A	109.5
C7—C6—C5	120.6 (2)	C11—C12—H12B	109.5
С7—С6—Н6	119.7	H12A—C12—H12B	109.5
С5—С6—Н6	119.7	C11—C12—H12C	109.5
С6—С7—С8	118.4 (2)	H12A—C12—H12C	109.5
С6—С7—Н7	120.8	H12B-C12-H12C	109.5

